前提

已经很久没深入研究过算法相关的东西,毕竟日常少用,就算死记硬背也是没有实施场景导致容易淡忘。最近在做一个脱敏数据和明文数据匹配的需求的时候,用到了一个算法叫Levenshtein Distance Algorithm,本文对此算法原理做简单的分析,并且用此算法解决几个常见的场景。

什么是Levenshtein Distance

Levenshtein Distance,一般称为编辑距离(Edit DistanceLevenshtein Distance只是编辑距离的其中一种)或者莱文斯坦距离,算法概念是俄罗斯科学家弗拉基米尔·莱文斯坦(Levenshtein · Vladimir I)在1965年提出。此算法的概念很简单:Levenshtein Distance两个字串之间,由一个转换成另一个所需的最少编辑操作次数,允许的编辑操作包括:

  • 将其中一个字符替换成另一个字符(Substitutions)。
  • 插入一个字符(Insertions)。
  • 删除一个字符(Deletions)。

下文开始简称Levenshtein DistanceLD

Levenshtein Distance公式定义

这个数学公式最终得出的数值就是LD的值。举个例子:

kitten这个单词转成sittingLD值为3:

  1. kitten → sitten (k→s)
  2. sitten → sittin (e→i)
  3. sittin → sitting (insert a ‘g’)

Levenshtein Distance动态规划方法

可以使用动态规划的方法去测量LD的值,步骤大致如下:

  • 初始化一个LD矩阵(M,N)MN分别是两个输入字符串的长度。
  • 矩阵可以从左上角到右下角进行填充,每个水平或垂直跳转分别对应于一个插入或一个删除。
  • 通过定义每个操作的成本为1,如果两个字符串不匹配,则对角跳转的代价为1,否则为0,简单来说就是:
    • 如果[i][j]位置的两个字符串相等,则从[i][j]位置左加1,上加1,左上加0,然后从这三个数中取出最小的值填充到[i][j]
    • 如果[i][j]位置的两个字符串相等,则从[i][j]位置左、左上、上三个位置的值中取最小值,这个最小值加1(或者说这三个值都加1然后取最小值),然后填充到[i][j]
  • 按照上面规则LD矩阵(M,N)填充完毕后,最终矩阵右下角的数字就是两个字符串的LD值。

这里不打算证明上面动态规划的结论(也就是默认这个动态规划的结果是正确的),直接举两个例子说明这个问题:

  • 例子一(两个等长字符串):sonsun
  • 例子二(两个非等长字符串):dogedog

例子一:

初始化LD矩阵(3,3)

s o n
0 1 2 3
s 1
u 2
n 3

计算[0][0]的位置的值,因为's' = 's',所以[0][0]的值 = min(1+1, 1+1, 0+0) = 0

s o n
0 1 2 3
s 1 0
u 2
n 3

按照这个规则计算其他位置的值,填充完毕后的LD矩阵`如下:

s o n
0 1 2 3
s 1 0 1 2
u 2 1 1 2
n 3 2 2 1

那么sonsunLD值为1

例子二:

初始化LD矩阵(4,3)

d o g
0 1 2 3
d 1
o 2
g 3
e 4

接着填充矩阵:

d o g
0 1 2 3
d 1 0 1 2
o 2 1 0 1
g 3 2 1 0
e 4 3 2 1

那么dogedogLD值为1

Levenshtein Distance算法实现

依据前面提到的动态规划方法,可以相对简单地实现LD的算法,这里选用Java语言进行实现:

public enum LevenshteinDistance {

    // 单例
    X;

    /**
     * 计算Levenshtein Distance
     */
    public int ld(String source, String target) {
        Optional.ofNullable(source).orElseThrow(() -> new IllegalArgumentException("source"));
        Optional.ofNullable(target).orElseThrow(() -> new IllegalArgumentException("target"));
        int sl = source.length();
        int tl = target.length();
        // 定义矩阵,行列都要加1
        int[][] matrix = new int[sl + 1][tl + 1];
        // 首行首列赋值
        for (int k = 0; k <= sl; k++) {
            matrix[k][0] = k;
        }
        for (int k = 0; k <= tl; k++) {
            matrix[0][k] = k;
        }
        // 定义临时的编辑消耗
        int cost;
        for (int i = 1; i <= sl; i++) {
            for (int j = 1; j <= tl; j++) {
                if (source.charAt(i - 1) == target.charAt(j - 1)) {
                    cost = 0;
                } else {
                    cost = 1;
                }
                matrix[i][j] = min(
                        // 左上
                        matrix[i - 1][j - 1] + cost,
                        // 右上
                        matrix[i][j - 1] + 1,
                        // 左边
                        matrix[i - 1][j] + 1
                );
            }
        }
        return matrix[sl][tl];
    }

    private int min(int x, int y, int z) {
        return Math.min(x, Math.min(y, z));
    }

    /**
     * 计算匹配度match rate
     */
    public BigDecimal mr(String source, String target) {
        int ld = ld(source, target);
        // 1 - ld / max(len1,len2)
        return BigDecimal.ONE.subtract(BigDecimal.valueOf(ld)
                .divide(BigDecimal.valueOf(Math.max(source.length(), target.length())), 2, BigDecimal.ROUND_HALF_UP));
    }
}

算法的复杂度为O(N * M),其中NM分别是两个输入字符串的长度。这里的算法实现完全参照前面的动态规划方法推论过程,实际上不一定需要定义二维数组(矩阵),使用两个一维的数组即可,可以参看一下java-string-similarity中Levenshtein算法的实现。以前面的例子运行一下:

public static void main(String[] args) throws Exception {
    String s = "doge";
    String t = "dog";
    System.out.println("Levenshtein Distance:" +LevenshteinDistance.X.ld(s, t));
    System.out.println("Match Rate:" +LevenshteinDistance.X.mr(s, t));
}
// 输出
Levenshtein Distance:1
Match Rate:0.75

Levenshtein Distance算法一些使用场景

LD算法主要的应用场景有:

  • DNA分析。
  • 拼写检查。
  • 语音识别。
  • 抄袭侦测。
  • 等等…

其实主要就是"字符串"匹配场景,这里基于实际遇到的场景举例。

脱敏数据和明文数据匹配

最近有场景做脱敏数据和明文数据匹配,有时候第三方导出的文件是脱敏文件,格式如下:

姓名 手机号 身份证
张*狗 123****8910 123456****8765****

己方有明文数据如下:

姓名 手机号 身份证
张大狗 12345678910 123456789987654321

要把两份数据进行匹配,得出上面两条数据对应的是同一个人的数据,原理就是:当且仅当两条数据中手机号的LD值为4,身份证的LD值为8,姓名的LD值为1,则两条数据完全匹配。

使用前面写过的算法:

public static void main(String[] args) throws Exception {
    String sourceName = "张*狗";
    String sourcePhone = "123****8910";
    String sourceIdentityNo = "123456****8765****";
    String targetName = "张大狗";
    String targetPhone = "12345678910";
    String targetIdentityNo = "123456789987654321";
    boolean match = LevenshteinDistance.X.ld(sourceName, targetName) == 1 &&
            LevenshteinDistance.X.ld(sourcePhone, targetPhone) == 4 &&
            LevenshteinDistance.X.ld(sourceIdentityNo, targetIdentityNo) == 8;
    System.out.println("是否匹配:" + match);
    targetName = "张大doge";
    match = LevenshteinDistance.X.ld(sourceName, targetName) == 1 &&
            LevenshteinDistance.X.ld(sourcePhone, targetPhone) == 4 &&
            LevenshteinDistance.X.ld(sourceIdentityNo, targetIdentityNo) == 8;
    System.out.println("是否匹配:" + match);
}
// 输出结果
是否匹配:true
是否匹配:false

拼写检查

这个场景看起来比较贴近生活,也就是词典应用的拼写提示,例如输入了throwab,就能提示出throwable,笔者认为一个简单实现就是遍历t开头的单词库,寻找匹配度比较高(LD值比较小)的单词进行提示(实际上为了满足效率有可能并不是这样实现的)。举个例子:

public static void main(String[] args) throws Exception {
    String target = "throwab";
    // 模拟一个单词库
    List<String> words = Lists.newArrayList();
    words.add("throwable");
    words.add("their");
    words.add("the");
    Map<String, BigDecimal> result = Maps.newHashMap();
    words.forEach(x -> result.put(x, LevenshteinDistance.X.mr(x, target)));
    System.out.println("输入值为:" + target);
    result.forEach((k, v) -> System.out.println(String.format("候选值:%s,匹配度:%s", k, v)));
}
// 输出结果
输入值为:throwab
候选值:the,匹配度:0.29
候选值:throwable,匹配度:0.78
候选值:their,匹配度:0.29

这样子就可以基于输入的throwab选取匹配度最高的throwable

抄袭侦测

抄袭侦测的本质也是字符串的匹配,可以简单认为匹配度高于某一个阈值就是属于抄袭。例如《我是一只小小鸟》里面的一句歌词是:

我是一只小小小小鸟,想要飞呀飞却飞也飞不高

假设笔者创作了一句歌词:

我是一条小小小小狗,想要睡呀睡却睡也睡不够

我们可以尝试找出两句词的匹配度:

System.out.println(LevenshteinDistance.X.mr("我是一只小小小小鸟,想要飞呀飞却飞也飞不高", "我是一条小小小小狗,想要睡呀睡却睡也睡不够"));
// 输出如下
0.67

可以认为笔者创作的歌词是完全抄袭的。当然,对于大文本的抄袭侦测(如论文查重等等)需要考虑执行效率的问题,解决的思路应该是类似的,但是需要考虑如何分词、大小写等等各种的问题。

小结

本文仅仅对Levenshtein Distance做了一点皮毛上的分析并且列举了一些简单的场景,其实此算法在日常生活中是十分常见的,笔者猜测词典应用的单词拼写检查、论文查重(抄袭判别)都可能和此算法相关。算法虽然学习曲线比较陡峭,但是它确实是一把解决问题的利刃。

参考资料: